Answer:
Stress is 7.716 MPa
Solution:
As per the question:
Magnitude of the resolved shear stress,
![\sigma_(R) = 2.8\ MPa](https://img.qammunity.org/2020/formulas/engineering/college/qajwho35spyvg7mm0scj26e9w9daw99ikq.png)
No. of atoms in Body Centered Cubic Crystal, n = 2
Now,
Shear stress is given by:
![\sigma = (\sigma_(R))/(cos\theta cos\lambda)](https://img.qammunity.org/2020/formulas/engineering/college/hq68lredio02okskfgdn80n01e8ge3fhju.png)
where
= angle between slip plane and the tensile axis
= angle between tensile axis and the slip direction, i.e., [1 2 1] and
![[\bar{1}\ 1\ 1]](https://img.qammunity.org/2020/formulas/engineering/college/c5nfk0uxsimzkw3gbgukbd5bjk3k1jty4b.png)
Direction of applied force: [1 2 1]
Plane: [1 0 1]
Direction:
![[\bar{1}\ 1\ 1]](https://img.qammunity.org/2020/formulas/engineering/college/c5nfk0uxsimzkw3gbgukbd5bjk3k1jty4b.png)
Also, we know that:
![cos\lambda = \frac{(1* - 1) + (2* 1) + (1* 1)}{\sqrt{1^(2) + 2^(2) + 1^(2)}* \sqrt{(- 1)^(2) + 1^(2) + 1^(2)}} = (2)/(3√(2))](https://img.qammunity.org/2020/formulas/engineering/college/pxc716hknumqrizvzg3hs22sp8wiekt9xt.png)
Now,
![cos\theta = \frac{(1* 1) + (2* 0) + (1* 1)}{\sqrt{1^(2) + 2^(2) + 1^(2)}* \sqrt{(1)^(2) + 0^(2) + 1^(2)}} = (2)/(2√(3))](https://img.qammunity.org/2020/formulas/engineering/college/lkj83qrlg0ux9rqkxk2otxtcemzjptwvnt.png)
Now,
Stress,
![\sigma = (2.8)/((2)/(2√(3))* (2)/(3√(2)))](https://img.qammunity.org/2020/formulas/engineering/college/6liwywk01m51ohyibk9up1answu3h8ljop.png)
![\sigma = 7.716\ MPa](https://img.qammunity.org/2020/formulas/engineering/college/2eiyenbplecuqywxs94n697cavehxsd52q.png)