Answer:
![\large\boxed{y=-(3)/(2)x+16(1)/(2)\to y=-1.5x+16.5}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vys16hlgvmvobo6ladz8ccj6g52ws4i0ud.png)
Explanation:
The slope-intercept form of an equation of a line:
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
m - slope
b - y-intercept
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
We have the points (3, 12) and (5, 9).
Substitute:
![m=(9-12)/(5-3)=(-3)/(2)=-(3)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u6ydre7tswcleu0kot3rzjies2hum1syp9.png)
Put the value of a slope and coordinates of the point (3, 12) to the equation of a line:
![12=-(3)/(2)(3)+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yc90mjwbzxv407axy081zk9d6mkpr6x46x.png)
![12=-(9)/(2)+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z6b0wr0hw700ywp1tnvrj5opj5s25w2amb.png)
add
to both sides
![16(1)/(2)=b\to b=16(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8xg5mun56wvlyrgryye2egaf463i9sgvbz.png)
Finally:
![y=-(3)/(2)x+16(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/56o61gvcwdopubjiojpnb6gbg94p4io7ib.png)