Answer:
Given equation that shows the height in feet after x seconds,
![f(x) = -3x^2 - 6x + 21](https://img.qammunity.org/2020/formulas/mathematics/high-school/600corl3lly1bwfs2u019nkraxl7lchtmx.png)
![f(x) = -3(x^2 + 2x) + 21](https://img.qammunity.org/2020/formulas/mathematics/high-school/t0n7ble66mm76ujkvsmtturyw6d5ivsk3t.png)
![f(x) = -3(x^2 + 2x + 1) + 21 + 3](https://img.qammunity.org/2020/formulas/mathematics/high-school/oggpyed8nm4abxx6yw8auionl02vx951ud.png)
![f(x) = -3(x+1)^2+24](https://img.qammunity.org/2020/formulas/mathematics/high-school/shfkktj6fnr7j3psvxgpodjfcv2vl8jc0z.png)
Since, the vertex form of a quadratic equation is,
![f(x) = a(x-h)^2 + k](https://img.qammunity.org/2020/formulas/mathematics/high-school/39m07p5xsfappx4ln5fp0ghdjaixigzb9e.png)
Where,
(h, k) is the vertex of the equation.
By comparing,
Vertex = (h, k) = (-1, 24)
i.e. h = -1
Now, f(0) = 21
⇒ The initial height of the rock from the lake is 21 ft,
Now, for zeroes,
f(x) = 0,
![-3x^2 - 6x + 21=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/e4dhsoyq6i3fb6iojwpc6dj0c2tcckagno.png)
By quadratic formula,
![x = (6 \pm √((-6)^2 - 4* -3* 21))/(-6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nsrwd1m9b4be0pixl7uhoc4nveuup754g1.png)
![=(6\pm √(36 + 252))/(-6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/28p3nu9axa6xuij9nr8354dk0b2qk02qhm.png)
![\implies x = 1.828\text{ or }x = -3.828](https://img.qammunity.org/2020/formulas/mathematics/high-school/8ljkz4anihy7wufsvta2cgj5ynlrfpfst7.png)
Since, number of seconds can not be zero,
∴ x = 1.828 seconds
i.e. the rock will reach in the lack after 1.828 seconds.