137k views
5 votes
Use Identities to find the exact value.
24) cos(-75°)

User Peterjmag
by
5.1k points

1 Answer

6 votes

Answer:


(1)/(4)(
√(6) -
√(2))

Explanation:

Using the addition formula for cosine

cos(x - y) = cosxcosy + sinxsiny

and the exact values

sin45° = cos45° =
(1)/(√(2) )

cos60° =
(1)/(2), sin60° =
(√(3) )/(2)

Note that

cos(- 75)° = cos(45 - 120)°, thus

cos(45 - 120)°

= cos45° cos120° + sin45° sin120°

= cos45° ( - cos60°) + sin45° sin60°

=
(1)/(√(2) ) × -
(1)/(2) +
(1)/(√(2) ) ×
(√(3) )/(2)

= -
(1)/(2√(2) ) +
(√(3) )/(2√(2) )

=
(√(3)-1 )/(2√(2) ) ×
(√(2) )/(√(2) )

=
(√(2)(√(3)-1)  )/(4)

=
(1)/(4)(
√(6)-√(2))

User Rosendo
by
6.8k points