43.2k views
1 vote
Vector question. Let v=<-2,1> u=<3,-5> , find:

1)v * u
2)2)Find the angle formed between v and u

User Dmusial
by
5.5k points

1 Answer

5 votes

Answer:

1. )
\vec {v}.\vec{u}= -11

2.) The angle between v and u is 147.52°.

Explanation:

Given:


\vec {v}= ( -2 , 1 )\\\vec {u}= ( 3 , -5 )

To Find:

1.
\vec {v}.\vec{u}= ?

2.
\theta = ?

Solution:


\vec {v}.\vec{u} is scalar product given as,


\vec {v}.\vec{u}=|\vec {v}||\vec {u}|\cos \theta


|\vec {v}|=|(-2, 1)|=\sqrt{(-2)^(2) +1^(2)}=√(5)\\|\vec {u}|=|(3, 5)|=\sqrt{(3)^(2) +(-5)^(2)}=√(34)


\vec {v}.\vec{u}=(-2i +j).(3i-5j)\\

Here only i.i = j.j =1 and i.j = j.i = 0


\vec {v}.\vec{u}=(-2* 3 +1* -5)\\\vec {v}.\vec{u}=-6-5=-11 \\

Now, Substituting the above values we get


-11=√(5)* √(34)\cos \theta\\ \cos \theta=(-11)/(√(170)) \\ \cos \theta =-0.84366\\\therefore \theta =cos^(-1)(-0.84366)\\\therefore \theta =147.52\°

As it is negative mean
\theta is in Second Quadrant Because Cosine is negative in Second Quadrant.

1. )
\vec {v}.\vec{u}= -11

2.) The angle between v and u is 147.52°.

User Stompchicken
by
5.4k points