Answer : The entropy change for the surroundings when 1.74 moles of Na(s) react at standard conditions is
![4.38* 10^4J/g.K](https://img.qammunity.org/2020/formulas/chemistry/college/urpbaqscm823z5u8omxvg612r5onk64kuu.png)
Explanation :
The given balanced chemical reaction is,
![2Na(s)+2H_2O(l)\rightarrow 2NaOH(aq)+H_2(g)](https://img.qammunity.org/2020/formulas/chemistry/college/ngqd7zvojbhycoboxbfjmedncgbaib8ui2.png)
First we have to calculate the enthalpy of reaction
.
![\Delta H^o=H_f_(product)-H_f_(reactant)](https://img.qammunity.org/2020/formulas/chemistry/college/bqfsl0ua83rmkr89qg3j762vemobac7c6b.png)
![\Delta H^o=[n_(NaOH)* \Delta H_f^0_((NaOH))+n_(H_2)* \Delta H_f^0_((H_2))]-[n_(Na)* \Delta H_f^0_{(Na)+n_(H_2O)* \Delta H_f^0_((H_2O))]](https://img.qammunity.org/2020/formulas/chemistry/college/d5ihpzml49bq3ua6u11sh2bosjktsnmxnm.png)
where,
We are given:
![\Delta H^o_f_((NaOH(aq)))=-469.15kJ/mol\\\Delta H^o_f_((H_2(g)))=0kJ/mol\\\Delta H^o_f_((Na(s)))=0kJ/mol\\\Delta H^o_f_((H_2O(l)))=-285.8kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/23y1kk06f74jresqdwnjp8xglh1968wgei.png)
Putting values in above equation, we get:
![\Delta H^o_(rxn)=[(2* -469.15)+(1* 0)]-[(2* 0)+(2* -285.8)]=-652.5kJ](https://img.qammunity.org/2020/formulas/chemistry/college/7odv1qpk0v0kh525gw5lmz98f1fr5c8it1.png)
Now we have to calculate the entropy change for surrounding
.
![\Delta S=(\Delta H^o_(rxn))/(T)](https://img.qammunity.org/2020/formulas/chemistry/college/9bnycjuulclan8oez7lf5rg6hzoen99kr1.png)
where,
= change in entropy
= change in enthalpy = -652.5 kJ
T = temperature = 298 K
Now put all the given values in the above formula, we get:
![\Delta S=(\Delta H^o_(rxn))/(T)](https://img.qammunity.org/2020/formulas/chemistry/college/9bnycjuulclan8oez7lf5rg6hzoen99kr1.png)
![\Delta S=(-652.5kJ)/(298K)](https://img.qammunity.org/2020/formulas/chemistry/college/umxhmaa7kggvij1cqqc4moxkfkl0p2f50q.png)
![\Delta S=(-652.5* 10^3J)/(298K)](https://img.qammunity.org/2020/formulas/chemistry/college/n4xubrjdr9o4h1ape65lx7toamm41ui2iu.png)
![\Delta S=-2189.59J/K=-2.19* 10^3J/K](https://img.qammunity.org/2020/formulas/chemistry/college/185z4z6zmtmjrd2cz81mbhv6qdieyfsqwf.png)
Now we have to calculate the entropy change for the surroundings when 1.74 moles of Na(s) react at standard conditions.
As, 2 moles of Na(s) has entropy change =
![-2.19* 10^3J/K](https://img.qammunity.org/2020/formulas/chemistry/college/x8u12jb3xnk54flxbwgx3p7d2slbeowv0f.png)
And, 1.74 moles of Na(s) has entropy change =
![(1.74mol)/(2mol)* (-2.19* 10^3J/K)](https://img.qammunity.org/2020/formulas/chemistry/college/o6wppwm6uw2yui0iy1nk6am95mugw5x0p7.png)
Thus, 23 g of Na(s) has entropy change =
![(1.74mol)/(2mol)* (-2.19* 10^3J/K)* 23g=4.38* 10^4J/g.K](https://img.qammunity.org/2020/formulas/chemistry/college/bpp7w4d5vf3xmopogds5zzxr6r72616tw4.png)
Therefore, the entropy change for the surroundings when 1.74 moles of Na(s) react at standard conditions is
![4.38* 10^4J/g.K](https://img.qammunity.org/2020/formulas/chemistry/college/urpbaqscm823z5u8omxvg612r5onk64kuu.png)