Answer:
D= -16
E= 0
F= 0
Explanation:
The given equation is
![x^(2) + y^(2) + Dx + Ey + F = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sse8n9erkm8ymt71jklhetuwhpv6e0eiw5.png)
It is also given that the circle passes through (0,0) (16,0) and (8,8).
Inserting (0,0) in the equation, it gives
![0 + 0 + 0 + 0 + F = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/xclugtb05l5vk76j0fgtv4bi8t1ljbpyh7.png)
This gives F = 0 .
Now inserting (16,0) , it gives
![16^(2) + 0^(2) + D(16) + E(0) + 0 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ezryracpyc59a9vo4y17ul3e6dzwip74xl.png)
![D(16) = -256](https://img.qammunity.org/2020/formulas/mathematics/high-school/94fkxfgueqsyt6per0dek9n2b3srl1xhc4.png)
![D = (-256)/(16)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2sjz3j93yerraydnrx80we5bruvc4xo74s.png)
D = -16
Now inserting (8,8) , it gives
![8^(2) + 8^(2) + (-16)(8) + (E)(8) + 0 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/spnfchaxt1qugzgcdmn9o2ogm71m8wiohw.png)
![-16 + E = -16](https://img.qammunity.org/2020/formulas/mathematics/high-school/ek61gjlzrrr7j5ig4b2i2o154p521oa3zv.png)
E = 0
Thus the equation of circle is
![x^(2) + y^(2) + (-16)x = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/tj81ac2ufitv6zta4pgfpcquvvw0xpcbes.png)
We can draw the following graph and thus verify that points (0,0) (8,8) and (16,0) lie on graph.