89.3k views
4 votes
An insulated thermos contains 106.0 cm3 of hot coffee at a temperature of 80.0 °C. You put in 11.0 g of ice cube at its melting point to cool the coffee. What is the temperature of the coffee once the ice has melted and the system is in thermal equilibrium? Treat the coffee as though it were pure water. (Answer in °C)

User Blackball
by
7.0k points

1 Answer

5 votes

Answer:

the final temperature is T f = 64.977 ° C≈ 65°C

Step-by-step explanation:

Since the thermus is insulated, the heat absorbed by the ice is the heat released by the coffee. Thus:

Q coffee + Q ice = Q surroundings =0 (insulated)

We also know that the ice at its melting point , that is 0 °C ( assuming that the thermus is at atmospheric pressure= 1 atm , and has an insignificant amount of impurities ).

The heat released by coffee is sensible heat : Q = m * c * (T final - T initial)

The heat absorbed by ice is latent heat and sensible heat : Q = m * L + m * c * (T final - T initial)

therefore

m co * c co * (T fco - T ico) + m ice * L + m ice * c wat * (T fwa - T iwa) = 0

assuming specific heat capacity of coffee is approximately the one of water c co = c wa = 4.186 J/g°C and the density of coffee is the same as water

d co = dw = 1 gr/cm³

therefore m co = d co * V co = 1 gr / cm³ * 106 cm³ = 106 gr

m co * c wat * (T f - T ico) + m ice * L + m ice * c wat * (T f - T iwa) = 0

m co * c wat * T f+ m ice * c wat * T f = m ice * c wat * T iwa + m co * c wat * Tico -m ice * L

T f = (m ice * c wat * T iwa + m co * c wat * Tico -m ice * L ) /( m co * c wat * + m ice * c wat )

replacing values

T f = (11 g * 4.186 J/g°C * 0°C + 106 g * 4.186 J/g°C*80°C - 11 g * 334 J/gr) / ( 11 g * 4.186 J/g°C + 106 g * 4.186 J/g°C* ) = 64,977 ° C

T f = 64.977 ° C

User Tass
by
6.3k points