206k views
1 vote
A 3 by 3 matrix Bis known to have eigenvalues 0, 1, 2. This information is enough to find three of these (give the answers where possible) : (a) the rank of B (b) thedeterminantofBTB (c) theeigenvaluesofBTB (d) the eigenvalues of (B2 + J)-1.

1 Answer

2 votes

Answer with Step-by-step explanation:

We are given that a matrix B .

The eigenvalues of matrix are 0, 1 and 2.

a.We know that

Rank of matrix B=Number of different eigenvalues

We have three different eigenvalues

Therefore, rank of matrix B=3

b.

We know that

Determinant of matrix= Product of eigenvalues

Product of eigenvalues=
0* 1* 2=0

After transpose , the value of determinant remain same.


\mid B^TB\mid=\mid B^T\mid \mid B\mid =0* 0=0

c.Let

B=
\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&2\end{array}\right]

Transpose of matrix:Rows change into columns or columns change into rows.

After transpose of matrix B


B^T=\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&2\end{array}\right]


B^TB=\left[\begin{array}{ccc}0^2&-&-\\-&1^2&-\\-&-&2^2\end{array}\right]


B^TB=\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&4\end{array}\right]

Hence, the eigenvalues of
B^TB are 0, 1 and 4.

d.Eigenvalue of Identity matrix are 1, 1 and 1.

Eigenvalues of
B^2+I=(0+1),(1+1),(2^2+1)=1,2,5

We know that if eigenvalue of A is
\lambda

Then , the eigenvalue of
A^(-1) is
(1)/(\lambda)

Therefore, the eigenvalues of
(B^2+I)^(-1) are


(1)/(1),(1)/(2),(1)/(5)

The eigenvalues of
(B^2+I)^(-1) are 1,
(1)/(2) and
(1)/(5)

User Taylor Rose
by
5.5k points