Answer with Step-by-step explanation:
We are given that a matrix B .
The eigenvalues of matrix are 0, 1 and 2.
a.We know that
Rank of matrix B=Number of different eigenvalues
We have three different eigenvalues
Therefore, rank of matrix B=3
b.
We know that
Determinant of matrix= Product of eigenvalues
Product of eigenvalues=

After transpose , the value of determinant remain same.

c.Let
B=
![\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/7wl77htoctynjldd64mhexhnn8xcyr38nf.png)
Transpose of matrix:Rows change into columns or columns change into rows.
After transpose of matrix B
![B^T=\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/n0pxj8a5rhyxqytwi148o48m1c9vsu8aol.png)
![B^TB=\left[\begin{array}{ccc}0^2&-&-\\-&1^2&-\\-&-&2^2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/ukozwezrbtilwrumqiyp0cielzmmho8ipy.png)
![B^TB=\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/20oc4r5ci6r4yqzwx8rwhlpetiymt2x6hp.png)
Hence, the eigenvalues of
are 0, 1 and 4.
d.Eigenvalue of Identity matrix are 1, 1 and 1.
Eigenvalues of

We know that if eigenvalue of A is

Then , the eigenvalue of
is

Therefore, the eigenvalues of
are

The eigenvalues of
are 1,
and
