164k views
2 votes
Use Euler's formula to derive the identity. (Note that if a, b, c, d are real numbers, a + bi = c + di means that a = c and b = d. Simplify your answer completely.) sin(2θ) = 2 sin(θ) cos(θ) Using Euler's formula, we have ei(2θ) = + i sin(2θ). On the other hand, ei(2θ) = (eiθ)2 = + i sin(θ) 2 = (cos2(θ) − sin2(θ)) + i sin(θ) . Equating Correct: Your answer is correct. parts, we find sin(2θ) = 2 sin(θ) cos(θ).

1 Answer

3 votes

Answer with Step-by-step explanation:

We have to prove that


sin 2\theta=2sin\theta cos\theta by using Euler's formula

Euler's formula :
e^(i\theta)=cos\theta+isin\theta


e^(i(2\theta))=(e^(i\theta))^2

By using Euler's identity, we get


cos2\theta+isin2\theta=(cos\theta+isin\theta)^2


cos2\theta+isin2\theta=(cos^2\theta-sin^2\theta+2isin\theta cos\theta)


(a+b)^2=a^2+b^2+2ab, i^2=-1


cos2\theta+isin2\theta=cos2\theta+i(2sin\theta cos\theta)


cos2\theta=cos^2\theta-sin^2\theta

Comparing imaginary part on both sides

Then, we get


sin2\theta=2sin\theta cos\theta

Hence, proved.

User Ryan Grimm
by
5.2k points