Answer:
The rate of transfer of heat is 0.119 W
Solution:
As per the question:
Diameter of the fin, D = 0.5 cm = 0.005 m
Length of the fin, l =30 cm = 0.3 m
Base temperature,
![T_(b) = 75^(\circ)C](https://img.qammunity.org/2020/formulas/physics/college/7cv5mljytmxwq6hvp3kywp5sp8ufmovtuv.png)
Air temperature,
![T_(infty) = 20^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/t5r0ipxtjkd1fz9qvgy4mur98w22gcpyzp.png)
k = 388 W/mK
h =
![20\ W/m^(2)K](https://img.qammunity.org/2020/formulas/physics/college/16bi6huwd84i7ru733d1a3ckhnkj5nnxeg.png)
Now,
Perimeter of the fin, p =
![\pi D = 0.005\pi \ m](https://img.qammunity.org/2020/formulas/physics/college/rqfmpnish1fwbi6ezyh7bccsuy1yn26zxu.png)
Cross-sectional area of the fin, A =
![(\pi)/(4)D^(2)](https://img.qammunity.org/2020/formulas/physics/college/rozebxdnguj4dicdme9wu1mquq6mw8x09d.png)
A =
![(\pi)/(4)(0.5* 10^(-2))^(2) = 6.25* 10^(- 6)\pi \ m^(2)](https://img.qammunity.org/2020/formulas/physics/college/ge8x82b77wafix5x4o3yyjqqwgl99f1xuq.png)
To calculate the heat transfer rate:
![Q_(f) = √(hkpA)tanh(ml)(T_(b) - T_(infty))](https://img.qammunity.org/2020/formulas/physics/college/d06bkbg4rsrdeeuuvdmicn2nitgubvu0vi.png)
where
![m = \sqrt{(hp)/(kA)} = \sqrt{(20* 0.005\pi)/(388* 6.25* 10^(- 6)\pi)} = 41.237](https://img.qammunity.org/2020/formulas/physics/college/16goz6yzkeyteex72av15jacezg64kkfgq.png)
Now,
![Q_(f) = \sqrt{20* 388* 0.005\pi* 6.25* 10^(- 6)\pi}tanh(41.237* 0.3)(75 - 20) = 0.119\ W](https://img.qammunity.org/2020/formulas/physics/college/qftsfwlsgln3uff5798qsv5cv6817vnrsq.png)