Answer:
B) 0.32 %
Step-by-step explanation:
Given that:
![K_(a)=1.8* 10^(-5)](https://img.qammunity.org/2020/formulas/chemistry/college/8egk3k92w9ivargemaenmrp5s4u5m9h97g.png)
Concentration = 1.8 M
Considering the ICE table for the dissociation of acid as:-
![\begin{matrix}&CH_3COOH&\rightleftharpoons &CH_3COOH&+&H^+\\ At\ time, t = 0 &1.8&&0&&0\\At\ time, t=t_(eq)&-x&&+x&&+x\\ ----------------&-----&-&-----&-&-----\\Concentration\ at\ equilibrium:-&1.8-x&&x&&x\end{matrix}]()
The expression for dissociation constant of acid is:
![K_(a)=\frac {\left [ H^(+) \right ]\left [ {CH_3COO}^- \right ]}{[CH_3COOH]}](https://img.qammunity.org/2020/formulas/chemistry/college/yqr2rnli3v3x6fety9iyrzc0d6qzw0qyok.png)
![1.8* 10^(-5)=(x^2)/(1.8-x)](https://img.qammunity.org/2020/formulas/chemistry/college/oab10lleux0f9m9187qr17ckrt1owmhqsr.png)
![1.8\left(1.8-x\right)=100000x^2](https://img.qammunity.org/2020/formulas/chemistry/college/8q14vh41hmiid2n99sdcol1bm7pb0w5jxj.png)
Solving for x, we get:
x = 0.00568 M
Percentage ionization =
![(0.00568)/(1.8)* 100=0.32 \%](https://img.qammunity.org/2020/formulas/chemistry/college/lrtdot3ro1gl7i6v1bywh84zqucgs6cs80.png)
Option B is correct.