Answer:
B) 0.32 %
Step-by-step explanation:
Given that:

Concentration = 1.8 M
Considering the ICE table for the dissociation of acid as:-
![\begin{matrix}&CH_3COOH&\rightleftharpoons &CH_3COOH&+&H^+\\ At\ time, t = 0 &1.8&&0&&0\\At\ time, t=t_(eq)&-x&&+x&&+x\\ ----------------&-----&-&-----&-&-----\\Concentration\ at\ equilibrium:-&1.8-x&&x&&x\end{matrix}]()
The expression for dissociation constant of acid is:
![K_(a)=\frac {\left [ H^(+) \right ]\left [ {CH_3COO}^- \right ]}{[CH_3COOH]}](https://img.qammunity.org/2020/formulas/chemistry/college/yqr2rnli3v3x6fety9iyrzc0d6qzw0qyok.png)


Solving for x, we get:
x = 0.00568 M
Percentage ionization =

Option B is correct.