Answer:
Remember, if
is a basis for a subspace W of
then
is an orthonormal basis of W, where
and
is defined as:
![v_1=x_1\\v_2=x_2-(v_1\cdot x_2)/(v_1\cdot v_1)v_1\\v_k=x_k-(v_1\cdot x_k)/(v_1\cdot v_1)v_1 - \cdots - (v_(k-1)\cdot x_k)/(v_(k-1)\cdot v_(k-1))v_(k-1)](https://img.qammunity.org/2020/formulas/mathematics/college/eqzjsd6s2qij120bcfutaldy3cawv0i4y4.png)
Then, to find a orthonormal basis of
we will find first the
's.
![v_1=x_1](https://img.qammunity.org/2020/formulas/mathematics/college/pfgiq96g0vse9okfb87l1kah5yr7l3cpmj.png)
![v_2=x_2-(v_1\cdot x_2)/(v_1\cdot v_1)v_1=(5,1,0)-((8,-6,0)\cdot (5,1,0))/((8,-6,0)\cdot (8,-6,0))(8,-6,0)=\\=(5,1,0)-(17)/(50)(8,-6,0)=((57)/(25),(76)/(25),0)](https://img.qammunity.org/2020/formulas/mathematics/college/vu4n4bhdp1b1dndzixnaanbkaecfeizw8e.png)
![v_3=x_3-(v_1\cdot x_3)/(v_1\cdot v_1)v_1-(v_2\cdot x_3)/(v_2\cdot v_2)v_2=\\=(0,0,2)-((8-6,0)\cdot (0,0,2))/((8,-6,0)\cdot (8,-6,0))(8,-6,0) -(((57)/(25),(76)/(25),0)\cdot (0,0,2))/(((57)/(25),(76)/(25),0)\cdot ((57)/(25),(76)/(25),0))((57)/(25),(76)/(25),0)=\\=(0,0,2)-0-0=\\=(0,0,2)](https://img.qammunity.org/2020/formulas/mathematics/college/gzqv9kgna01xj0oqfluclt290551w6qmdv.png)
Therefore,
is a ortogonal basis for
. But we need a orthonormal basis. Then is enough find the corresponding unit vector of the ortogonal basis found.
![q_1=(1)/(||v_1||)v_1=(1)/(√(100))(8,-6,0)\\q_2=(1)/(||v_2||)v_2=(1)/((19)/(5))((57)/(25),(76)/(25),0)=(5)/(19)((57)/(25),(76)/(25),0)\\q_3=(1)/(||v_3||)v_3=(1)/(2)(0,0,2)](https://img.qammunity.org/2020/formulas/mathematics/college/rqgken8wbilyosdoaq7qs8hrbqv0g1soq3.png)
Hence
is a orthonormal basis for
![\mathbb{R}^3](https://img.qammunity.org/2020/formulas/mathematics/college/20edlpskcr2ra50kpi8nf5858s7bm5ur5j.png)