Answer:
![a=15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q2dtnkh4d174uuorauexa1uiydfhp2umcw.png)
![b=(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w942t7mfvhggh1kcu7zqg8gz1tvaaj959z.png)
Explanation:
we have an exponential function of the form
![y=a(b^x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/x0x93s1trup0bbenc7cc1jhduado9ke4p6.png)
where
a is the initial value or y-intercept
b is the base
Looking at the graph
we can see the ordered pairs (0,15) and (1,5)
(0,15) ---> y-intercept
so
The value of a is equal to
![a=15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q2dtnkh4d174uuorauexa1uiydfhp2umcw.png)
substitute
![y=15(b^x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eitfpdlxahutg5a6th8zyuwlz0rgyafjo3.png)
with the point (1,5) find the value of b
For x=1, y=5
substitute in the exponential function
![5=15(b^1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z0wxj7cpzd8tu9j8mf2p4158417r41iozk.png)
solve for b
![5=15(b)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a5m2hd92lou51pumokvkqbhkn0y6e8u8v5.png)
![b=(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w942t7mfvhggh1kcu7zqg8gz1tvaaj959z.png)
therefore
The exponential function is
![y=15((1)/(3)^x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t218khyq8boom8q4v0sdtpxfwikrp1272u.png)