Answer:
The Riemann Sum for
with n = 4 using midpoints is about 24.328125.
Explanation:
We want to find the Riemann Sum for
with n = 4 using midpoints.
The Midpoint Sum uses the midpoints of a sub-interval:
![\int_(a)^(b)f(x)dx\approx\Delta{x}\left(f\left((x_0+x_1)/(2)\right)+f\left((x_1+x_2)/(2)\right)+f\left((x_2+x_3)/(2)\right)+...+f\left((x_(n-2)+x_(n-1))/(2)\right)+f\left((x_(n-1)+x_(n))/(2)\right)\right)](https://img.qammunity.org/2020/formulas/mathematics/college/z7vg839qhmmf9b5xn91gw673sl6p6o7drw.png)
where
![\Delta{x}=(b-a)/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/nx4q02vbrzcezpf2ddxyjqcukvcdlk94db.png)
We know that a = 4, b = 5, n = 4.
Therefore,
![\Delta{x}=(5-4)/(4)=(1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/zow0qjw62ey12fof927n1fikgq5gfucbeq.png)
Divide the interval [4, 5] into n = 4 sub-intervals of length
![\Delta{x}=(1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/eqhnqtfedopxhjylv70xoi5ugoclrgmxka.png)
![\left[4, (17)/(4)\right], \left[(17)/(4), (9)/(2)\right], \left[(9)/(2), (19)/(4)\right], \left[(19)/(4), 5\right]](https://img.qammunity.org/2020/formulas/mathematics/college/3xe3z5qmrg9a4y542s6p7jev29sztd385h.png)
Now, we just evaluate the function at the midpoints:
![f\left((x_(0)+x_(1))/(2)\right)=f\left((\left(4\right)+\left((17)/(4)\right))/(2)\right)=f\left((33)/(8)\right)=(1345)/(64)=21.015625](https://img.qammunity.org/2020/formulas/mathematics/college/hbixprkba4hl4s1cjfv92op1lwyc6eqd48.png)
![f\left((x_(1)+x_(2))/(2)\right)=f\left((\left((17)/(4)\right)+\left((9)/(2)\right))/(2)\right)=f\left((35)/(8)\right)=(1481)/(64)=23.140625](https://img.qammunity.org/2020/formulas/mathematics/college/4t9yl714r4o3btv9p1nsnk0zvbt7liomag.png)
![f\left((x_(2)+x_(3))/(2)\right)=f\left((\left((9)/(2)\right)+\left((19)/(4)\right))/(2)\right)=f\left((37)/(8)\right)=(1625)/(64)=25.390625](https://img.qammunity.org/2020/formulas/mathematics/college/e7e7r9d8jdpdlvkmnw5wst7tthzq8ss6kd.png)
![f\left((x_(3)+x_(4))/(2)\right)=f\left((\left((19)/(4)\right)+\left(5\right))/(2)\right)=f\left((39)/(8)\right)=(1777)/(64)=27.765625](https://img.qammunity.org/2020/formulas/mathematics/college/krq6otwjizpfndqplg8qdlhotr65rr9ius.png)
Finally, use the Midpoint Sum formula
![(1)/(4)(21.015625+23.140625+25.390625+27.765625)=24.328125](https://img.qammunity.org/2020/formulas/mathematics/college/7bqxt1mkk0hasyi3frqfzoi6aclx4kykaz.png)
This is the sketch of the function and the approximating rectangles.