209k views
5 votes
Be sure to answer all parts. List the evaluation points corresponding to the midpoint of each subinterval to three decimal places, sketch the function and approximating rectangles and evaluate the Riemann sum to six decimal places if needed. f(x) = x2 + 4,[4, 5], n = 4. Give your answer in an ascending order. Evaluation points: , ,

1 Answer

0 votes

Answer:

The Riemann Sum for
\int\limits^5_4 {x^2+4} \, dx with n = 4 using midpoints is about 24.328125.

Explanation:

We want to find the Riemann Sum for
\int\limits^5_4 {x^2+4} \, dx with n = 4 using midpoints.

The Midpoint Sum uses the midpoints of a sub-interval:


\int_(a)^(b)f(x)dx\approx\Delta{x}\left(f\left((x_0+x_1)/(2)\right)+f\left((x_1+x_2)/(2)\right)+f\left((x_2+x_3)/(2)\right)+...+f\left((x_(n-2)+x_(n-1))/(2)\right)+f\left((x_(n-1)+x_(n))/(2)\right)\right)

where
\Delta{x}=(b-a)/(n)

We know that a = 4, b = 5, n = 4.

Therefore,
\Delta{x}=(5-4)/(4)=(1)/(4)

Divide the interval [4, 5] into n = 4 sub-intervals of length
\Delta{x}=(1)/(4)


\left[4, (17)/(4)\right], \left[(17)/(4), (9)/(2)\right], \left[(9)/(2), (19)/(4)\right], \left[(19)/(4), 5\right]

Now, we just evaluate the function at the midpoints:


f\left((x_(0)+x_(1))/(2)\right)=f\left((\left(4\right)+\left((17)/(4)\right))/(2)\right)=f\left((33)/(8)\right)=(1345)/(64)=21.015625


f\left((x_(1)+x_(2))/(2)\right)=f\left((\left((17)/(4)\right)+\left((9)/(2)\right))/(2)\right)=f\left((35)/(8)\right)=(1481)/(64)=23.140625


f\left((x_(2)+x_(3))/(2)\right)=f\left((\left((9)/(2)\right)+\left((19)/(4)\right))/(2)\right)=f\left((37)/(8)\right)=(1625)/(64)=25.390625


f\left((x_(3)+x_(4))/(2)\right)=f\left((\left((19)/(4)\right)+\left(5\right))/(2)\right)=f\left((39)/(8)\right)=(1777)/(64)=27.765625

Finally, use the Midpoint Sum formula


(1)/(4)(21.015625+23.140625+25.390625+27.765625)=24.328125

This is the sketch of the function and the approximating rectangles.

Be sure to answer all parts. List the evaluation points corresponding to the midpoint-example-1
User Shinite
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.