56.2k views
4 votes
Find the equation of the line joining the points whose x coordinates on the curve y = 2x^2 - 3 are -1 and 1.​

User Haagel
by
7.8k points

1 Answer

7 votes

Answer:

The equation of the line joining the points (-1,-1), (1,-1) is

y +1 =0

Explanation:

Step(i):-

Given curve y = 2 x² -3 , x = -1 and x=1

substitute x =-1 in given curve y = 2 x² -3

y = 2 (-1 )² - 3

y = 2 -3

y = - 1

First point A( -1 ,-1)

substitute x =1 in given curve y = 2 x² -3

y = 2 (1)² - 3

y = -1

Second point B( 1 , -1 )

Step(ii):-

A( -1, -1 ) and B( 1,-1)

slope of the line


m = (y_(2)-y_(1) )/(x_(2) -x_(1) ) = (-1-(-1))/(1-(-1)) =0

The equation of the straight line passing through the point ( -1,-1 ) having slope m =0

y - y₁ = m ( x - x₁ )

y - (-1) = 0( x-(-1)

y +1 =0

The equation of the line joining the points (-1,-1), (1,-1) is y +1 =0

User Mohammad Salehi
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories