Final answer:
The standard enthalpy change (ΔH°) for the process C6H6(l) → C6H6(g) is 82.93 kJ/mol. The standard entropy change (ΔS°) for the process is 269.2 J/K*mol. The standard free energy change (ΔG°) for the process is 7361.033 kJ/mol.
Step-by-step explanation:
The standard enthalpy change, ΔH°, for the process C6H6(l) → C6H6(g) can be calculated using the standard enthalpy of formation of benzene in the gaseous state and the liquid state. The equation for ΔH° is ΔH° = ΣΔH°(products) - ΣΔH°(reactants). In this case, since benzene is the only product and there are no reactants, the equation simplifies to ΔH° = ΔH°(C6H6(g)). Therefore, ΔH° = 82.93 kJ/mol.
The standard entropy change, ΔS°, for the process can be calculated using the standard entropy of benzene in the gaseous state and the liquid state. The equation for ΔS° is ΔS° = ΣΔS°(products) - ΣΔS°(reactants). Similar to the calculation for ΔH°, since benzene is the only product and there are no reactants, the equation simplifies to ΔS° = ΔS°(C6H6(g)). Therefore, ΔS° = 269.2 J/K*mol.
The standard free energy change, ΔG°, for the process can be calculated using the equation ΔG° = ΔH° - TΔS°, where T is the temperature in Kelvin. Since the temperature is given as 25.00°C, we need to convert it to Kelvin by adding 273.15. Therefore, T = 25.00°C + 273.15 = 298.15 K. Substituting the values into the equation, we get ΔG° = 82.93 kJ/mol - (298.15 K)(269.2 J/K*mol) = 7361.033 kJ/mol.