![\vec F(x,y,z)=y\,\vec\imath+x\,\vec\jmath+3\,\vec k](https://img.qammunity.org/2020/formulas/mathematics/college/xsv5ui9ke5o70pve59v0ejkwuxji9tnkd0.png)
is conservative if there is a scalar function
such that
. This would require
![(\partial f)/(\partial x)=y](https://img.qammunity.org/2020/formulas/mathematics/college/wtoiakdqxo7m4oxpobbj4rslg7qcb76my0.png)
![(\partial f)/(\partial y)=x](https://img.qammunity.org/2020/formulas/mathematics/college/fd5qvwz2saffy52f440gt3ydpm2irzshs9.png)
![(\partial f)/(\partial z)=3](https://img.qammunity.org/2020/formulas/mathematics/college/bjdsf5jz8k8wmpzu3379vjho0hhmflhty5.png)
(or perhaps the last partial derivative should be 4 to match up with the integral?)
From these equations we find
![f(x,y,z)=xy+g(y,z)](https://img.qammunity.org/2020/formulas/mathematics/college/cq3xj59ik30lv3x0ghc3pjwgmea8tr8u9x.png)
![(\partial f)/(\partial y)=x=x+(\partial g)/(\partial y)\implies(\partial g)/(\partial y)=0\implies g(y,z)=h(z)](https://img.qammunity.org/2020/formulas/mathematics/college/94jnv0sqzwssebdboiy7hf2pj44svpba5p.png)
![f(x,y,z)=xy+h(z)](https://img.qammunity.org/2020/formulas/mathematics/college/ripvv864bv0nh8hoyhyh4rx6cgdmsij2oa.png)
![(\partial f)/(\partial z)=3=(\mathrm dh)/(\mathrm dz)\implies h(z)=3z+C](https://img.qammunity.org/2020/formulas/mathematics/college/bh52hud6we71h0c6xmzhn3qevhoq0ugxic.png)
![f(x,y,z)=xy+3z+C](https://img.qammunity.org/2020/formulas/mathematics/college/gfkg6mm58w3ekkadady7s2n7y2pqfkxjb4.png)
so
is indeed conservative, and the gradient theorem (a.k.a. fundamental theorem of calculus for line integrals) applies. The value of the line integral depends only the endpoints:
![\displaystyle\int_((1,2,3))^((5,7,-2))y\,\mathrm dx+x\,\mathrm dy+3\,\mathrm dz=\int_((1,2,3))^((5,7,-2))\\abla f(x,y,z)\cdot\mathrm d\vec r](https://img.qammunity.org/2020/formulas/mathematics/college/2tioavr6tzagdj64kekcgrgk1s8n4f42fs.png)
![=f(5,7,-2)-f(1,2,3)=\boxed{18}](https://img.qammunity.org/2020/formulas/mathematics/college/x3e96c6gzvd7gd64yy6b2zncfvikeesj7c.png)