186k views
0 votes
At a certain temperature, 0.760 mol SO3 is placed in a 1.50 L container. 2SO3(g) = 2SO2(g) + O2(g)At equilibrium, 0.130 mol O2 is present. Calculate Kc.

User Parov
by
7.9k points

1 Answer

5 votes

Answer:


K_c=0.0867

Step-by-step explanation:

Moles of SO₃ = 0.760 mol

Volume = 1.50 L


Molarity=(Moles\ of\ solute)/(Volume\ of\ the\ solution)


Molarity=(0.760)/(1.50\ L)

[SO₃] = 0.5067 M

Considering the ICE table for the equilibrium as:


\begin{matrix} & 2SO_3_((g)) & \rightleftharpoons & 2SO_2_((g)) & + & O_2_((g))\\At\ time, t = 0 & 0.5067 &&0&&0 \\ At\ time, t=t_(eq) & -2x &&2x&&x \\----------------&-----&-&-----&-&-----\\Concentration\ at\ equilibrium:- &0.5067-2x&&2x&&x\end{matrix}

Given:

Equilibrium concentration of O₂ = 0.130 mol

Volume = 1.50 L


Molarity=(Moles\ of\ solute)/(Volume\ of\ the\ solution)


Molarity=(0.130)/(1.50\ L)

[O₂] = x = 0.0867 M

[SO₂] = 2x = 0.1733 M

[SO₃] = 0.5067-2x = 0.3334 M

The expression for the equilibrium constant is:


K_c=\frac {[SO_2]^2[O_2]}{[SO_3]^2}


K_c=((0.3334)^2* 0.0867)/((0.3334)^2)


K_c=0.0867

User Ravikiran Kalal
by
8.5k points