49.4k views
2 votes
24. Suppose you throw two fair number cubes. What is the probability that the sum of the results of the throw is 4,5, or 6? Show your work and explain.

User Ofirule
by
8.2k points

1 Answer

0 votes

Answer:

0.33

Explanation:

Two fair number cubes can be thought as dice with sides numbered from 1 to 6. The throw of two dice may result in one of the following combinations in which (d1,d2) are the results of die 1 and 2 respectively:

Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}

There are 36 as many possible combinations

The sum of both quantities will produce 11 possible results

S={2,3,4,5,6,7,8,9,10,11,12}

The combinations which produce a sum of 4 are (1,3)(2,2),(3,1), 3 in total

The combinations which produce a sum of 5 are (1,4)(2,3),(3,2),(4,1) 4 in total

The combinations which produce a sum of 6 are (1,5)(2,4),(3,3),(4,2),(5,1) 5 in total

If we want to know the probability that the sum of the results of the throw is 4,5, or 6, we compute the total ways to produce them

T=3+4+5=12 combinations

The probability is finally computed as


P=(T)/(36)=(12)/(36)=(1)/(3)=0.33

User Hasam
by
8.3k points

No related questions found