To solve the problem it is necessary to apply the concepts related to heat flow,
The heat flux can be defined as
![(dQ)/(dt) = H = (kA\Delta T)/(d)](https://img.qammunity.org/2020/formulas/physics/college/6w840q01osmez6c2w4zx5sjkr9gtzh5le8.png)
Where,
k = Thermal conductivity
A = Area of cross-sectional area
d = Length of the rod
Temperature difference between the ends of the rod
Thermal conductivity of copper rod
Area of cross section of rod
Temperature difference
length of rod
Replacing then,
![H = (kA\Delta T)/(d)](https://img.qammunity.org/2020/formulas/physics/college/acmynjc87kkm16bl30utdc8r4tocedxdc9.png)
![H = ((388)(3.6 *10^(-4))(100))/(1.3)](https://img.qammunity.org/2020/formulas/physics/college/496mfn816s7djtx9jryzgdemacqwuoem9l.png)
![H=10.7446J](https://img.qammunity.org/2020/formulas/physics/college/mv683q0hx7eenkdgt1w1qfjohlv1mgfjdx.png)
From the definition of heat flow we know that this is also equivalent
![H = \dot{m}*L](https://img.qammunity.org/2020/formulas/physics/college/q8ybw0vwa5zgcfa0osrxslzs7svss38bt7.png)
Where,
Mass per second
Latent heat of fusion of ice
Re-arrange to find
![\dot{m},](https://img.qammunity.org/2020/formulas/physics/college/zjkhv13ju8lpg0j04lagwdts6i2amqpn9w.png)
![H = \dot{m}*L](https://img.qammunity.org/2020/formulas/physics/college/q8ybw0vwa5zgcfa0osrxslzs7svss38bt7.png)
![\dot{m}=(L)/(H)](https://img.qammunity.org/2020/formulas/physics/college/xhqdb19cadyzt97hzg288a93yto4nebpli.png)
![\dot{m}=(334)/(10.7446)](https://img.qammunity.org/2020/formulas/physics/college/i1xfubqprran1honixf0v3u86z39algocq.png)
![\dot{m} = 31.08g/s](https://img.qammunity.org/2020/formulas/physics/college/eymzpkypcca07nplse40lkqu7mgewbs6mn.png)
![\dot{m}= 0.032g/s](https://img.qammunity.org/2020/formulas/physics/college/anhuk81ntc2kecpd7bgdadcdxu7w0f6b5u.png)
Therefore the mass of ice per second that melts is 0.032g