To develop this problem it is necessary to use the equations of description of the simple harmonic movement in which the acceleration and angular velocity are expressed as a function of the Amplitude.
Our values are given as
![f = 4.11 *10^(12) Hz](https://img.qammunity.org/2020/formulas/physics/college/wssx9v2qgcfm6i54f1oe8otuf2t5asf9db.png)
![A = 1.23 * 10^(-11)m](https://img.qammunity.org/2020/formulas/physics/college/ftpdtt0odlkglbftmxr8o31wtt1a24vnx7.png)
The angular velocity of a body can be described as a function of frequency as
![\omega = 2\pi f](https://img.qammunity.org/2020/formulas/physics/middle-school/pwzsovla2h22uvtixjbu2t72piygxnka5a.png)
![\omega = 2\pi 4.11 *10^(12)](https://img.qammunity.org/2020/formulas/physics/college/wn0spc96oi7tl5fect0wqhz6soiwtdj2ab.png)
![\omega=2.582*10^(13) rad/s](https://img.qammunity.org/2020/formulas/physics/college/t4bx8ccl9c0nmazez2g7g0c787yhw7ggol.png)
PART A) The expression for the maximum angular velocity is given by the amplitude so that
![V = A\omega](https://img.qammunity.org/2020/formulas/physics/college/su22io6238vbajsmc70ly8z2ckm30og21g.png)
![V =( 1.23 * 10^(-11))(2.582*10^(13))](https://img.qammunity.org/2020/formulas/physics/college/hdt5uuuyv01e8pgcfeyhegpzcbu75ari09.png)
![V = = 317.586m/s](https://img.qammunity.org/2020/formulas/physics/college/oixauwr50r1b1wvrfxnxh17wqrp438zbdi.png)
PART B) The maximum acceleration on your part would be given by the expression
![a = A \omega^2](https://img.qammunity.org/2020/formulas/physics/college/qb1349e15k9egh0hohlroypyicx3b3yzbi.png)
![a =( 1.23 * 10^(-11))(2.582*10^(13))^2](https://img.qammunity.org/2020/formulas/physics/college/u8x678njfw349d4mlawzyv2ug2tpevcwg4.png)
![a= 8.2*10^(15)m/s^2](https://img.qammunity.org/2020/formulas/physics/college/rqn2zc1pg1yuaelg0oy0zhvgy7eab1ebj4.png)