185k views
5 votes
A random sample of 300 CitiBank VISA cardholder accounts indicated a sample mean debt of 1,220 with a sample standard deviation of 840. Construct a 95 percent confidence interval estimate of the average debt of all cardholders.

User Sirena
by
5.2k points

1 Answer

6 votes

Answer: (1124.5619, 1315.4381)

Explanation:

The confidence interval for population mean
(\mu) when populatin standard deviation is unknown :-


\overline{x}\pm t^*(s)/(√(n))

, where
\overline{x} = Sample mean


s =Sample standard deviation

t* = Critical t-value.

Given : n= 300

Degree of freedom : df = n-1 = 299


\overline{x}=1220


s=840

Confidence interval = 95%

Significance level :
\alpha=1-0.95=0.05

Using t-distribution table ,

The critical value for 95% Confidence interval for significance level 0.05 and df = 299 :
t^*=t_(\alpha/2,\ df)=t_(0.025,\ 299)=1.9679

Then, a 95% confidence interval estimate of the average debt of all cardholders will be :-


1220\pm (1.9679)(840)/(√(300))


=1220\pm (1.9679)(840)/(17.3205080757)


=1220\pm (1.9679)(48.4974226119)


\approx1220\pm 95.4381=(1220-95.438,\ 1220+95.438)\\\\=(1124.5619,\ 1315.4381)

Hence, a 95% confidence interval estimate of the average debt of all cardholders is (1124.5619, 1315.4381) .

User Ravindra Bagale
by
5.7k points