159k views
4 votes
Can somebody help me with the 3 questions?

Can somebody help me with the 3 questions?-example-1
User Dpren
by
8.3k points

1 Answer

1 vote

Answer:

1.

a. 2.75 seconds

b. 169 feet

2. x - 3 is a factor

Other factors: x + 2, 2x + 1, 3x - 4

3. Real zeros:
x = -2

Complex zeros:
x_(2,3)=-3\pm 2i

Explanation:

1. Given equation of parabola


s(t)=-16t^2+88t+48

a) The rocket reaches its maximum height at the vertex of parabola. Find t-coordinate of the vertex:


t_v=(-b)/(2a)\\ \\=(-88)/(2\cdot (-16))\\ \\=(11)/(4)\\ \\=2.75\ seconds

b) The maximum height is s-coordinate of the vertex. Find it:


s\left((11)/(4)\right)\\ \\=-16\cdot \left((11)/(4)\right)^2+88\cdot\left((11)/(4)\right)+48\\ \\=-121+22\cdot 11+48\\ \\=169\ feet

2. For x – 3 to be a factor of
f(x)=6x^4-11x^3-35x^2+34x+24, the Factor Theorem says that x = 3 must be a zero of f(x). Check it (whether f(3)=0):


f(3)\\ \\=6\cdot 3^4-11\cdot 3^3-35\cdot 3^2+34\cdot 3+24\\ \\=6\cdot 81-11\cdot 27-35\cdot 9+102+24\\ \\=486-297-315+126\\ \\=0

So, x = 3 is zero of the function f(x) and x - 3 is the factor of the function f(x). Rewrite the function as follows:


f(x)\\ \\=6x^4-11x^3-35x^2+34x+24\\ \\=6x^4-18x^3+7x^3-21x^2-14x^2+42x-8x+24\\ \\=6x^3(x-3)+7x^2(x-3)-14x(x-3)-8(x-3)\\ \\=(x-3)(6x^3+7x^2-14x-8)\\ \\=(x-3)(6x^3+12x^2-5x^2-10x-4x-8)\\ \\=(x-3)(6x^2(x+2)-5x(x+2)-4(x+2))=\\ \\=(x-3)(x+2)(6x^2-5x-4)\\ \\=(x-3)(x+2)(6x^2+3x-8x-4)\\ \\=(x-3)(x+2)(3x(2x+1)-4(2x+1))\\ \\=(x-3)(x+2)(2x+1)(3x-4)

3.
x=-2 is a zero of the function
f(x)=x^3+8x^2+25x+26, then


f(x)\\ \\=x^3+8x^2+25x+26\\ \\=x^3+2x^2+6x^2+12x+13x+26\\ \\=x^2(x+2)+6x(x+2)+13(x+2)\\ \\=(x+2)(x^2+6x+13)

Find the discriminant of the quadratic polynomial
x^2+6x+13;


D=6^2-4\cdot 1\cdot 13=36-52=-16

This expression has no more real zeros (the discriminant is less than 0), it has two complex zeros:


x_(1,2)=(-6\pm √(-16))/(2\cdot 1)=(-6\pm 4i)/(2)=-3\pm 2i

User Brian Rosamilia
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories