35.3k views
2 votes
Determine the value of x so that the line containing the given points is parallel to another line whose slope is also given.

12. A(x, 5) and B(-4,3)
slope = -1

13. R(3, -5) and S(1, x)
slope = -2

1 Answer

3 votes

Answer:

Explanation:

12) A(x, 5) and B(-4,3)

slope = -1

We want to determine the value of x so that the line AB is parallel to another line whose slope is given as -1

Slope, m is expressed as change in y divided by change in x. This means

Slope = (y2 - y1)/(x2 - x1)

From the information given

y2= 3

y1 = 5

x2 = -4

x1 = x

Slope = (3-5) / (-4-x) = -2/-4-x

Recall, if two lines are parallel, it means that their slopes are equal. Since the slope of the parallel line is -1, therefore

-2/-4-x = -1

-2 = -1(-4-x)

-2 = 4 + x

x = -2 - 4 = - 6

x = -6

13) R(3, -5) and S(1, x)

slope = -2

We want to determine the value of x so that the line RS is parallel to another line whose slope is given as -2

Slope = (y2 - y1)/(x2 - x1)

From the information given

y2= x

y1 = -5

x2 = 1

x1 = 3

Slope = (x - -5) / (1 - 3) = (x+5)/-2

Since the slope of the parallel line is -2, therefore

(x+5)/-2 = -2

x + 5 = -2×-2

x + 5 = 4

x = 4 - 5 = - 1

User Arnorhs
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories