Answer:
6.
![\displaystyle y - 1 = 2(x + 5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oh01vjbyg6am53k28ubh3m1tldqne2g0fi.png)
5.
![\displaystyle y + 4 = -3(x - 2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/slxgqb8rzob1qloq91ihnzghiokw5tnm00.png)
4.
![\displaystyle y - 5 = -2(x + 1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2kk8p8xj8cgtweopbbrup51p2pge7df318.png)
3.
![\displaystyle y - 2 = 3(x - 4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x1abhu4esuuce40t8nnt7iyyyojogd3yz0.png)
2.
![\displaystyle y - 4 = -3(x + 2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/surxe9abbidxqvvn22rmkqquaxpy9isidi.png)
1.
![\displaystyle y - 5 = 2(x - 1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l4ol1kz9ueslo7y7bh0wdrs1tt5vjckwnd.png)
Explanation:
In the Point-Slope Formula [y - y₁ = m(x - x₁)], all the negative symbols give the OPPOSITE terms of what they really are, so be EXTREMELY CAREFUL inserting the coordinates into the formula with their CORRECT SIGNS.
I am joyous to assist you anytime.