Answer:
g(x) is a dilation of function f(x), and
![g(x) = (1)/(4)x^2](https://img.qammunity.org/2022/formulas/mathematics/college/tadczxc3f4z2obl8znv8apjov0d25ywgu4.png)
Explanation:
Function f is
![f(x) = x^2](https://img.qammunity.org/2022/formulas/mathematics/college/54v7cgapsf7jfkrje6jm7umiomd0hs6r87.png)
So:
When
![x = 0, f(x) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/m1hg3balk5hy3vnoq9xrwr21ne3btpioas.png)
When
![x = 1, f(x) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/ib31n2a2hlwaiqb1whv1edl7isf0gu5lge.png)
When
![x = 2, f(x) = 4](https://img.qammunity.org/2022/formulas/mathematics/college/p854rfw9yadfz1h2qoonsieh5ku0t2h1is.png)
When
![x = 3, f(x) = 9](https://img.qammunity.org/2022/formulas/mathematics/college/ts5iy7d920v18ksjpiih15mqzpdfyh21uz.png)
Now
For function g, looking at the graphic, we have that:
When
![x = 0, g(x) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/eqi7zerxbbs4ctcfxca3bqmb3pj7xi88fl.png)
When
![x = 2, g(x) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/5i4z0d317tw2cm4ez32gyfkiygw0xwus62.png)
When
![x = 3, g(x) = 2.5](https://img.qammunity.org/2022/formulas/mathematics/college/o1qu8qksx9g4s9ggalmotz0osqy567h20g.png)
That is, g(x) is a fourth of f(x).
This means that we have a dilation by a factor of 1/4, so
![g(x) = (1)/(4)x^2](https://img.qammunity.org/2022/formulas/mathematics/college/tadczxc3f4z2obl8znv8apjov0d25ywgu4.png)