Answer:
The [SO₃²⁻]
Step-by-step explanation:
From the first dissociation of sulfurous acid we have:
H₂SO₃(aq) ⇄ H⁺(aq) + HSO₃⁻(aq)
At equilibrium: 0.50M - x x x
The equilibrium constant (Ka₁) is:
With Ka₁= 1.5x10⁻² and solving the quadratic equation, we get the following HSO₃⁻ and H⁺ concentrations:
Similarly, from the second dissociation of sulfurous acid we have:
HSO₃⁻(aq) ⇄ H⁺(aq) + SO₃²⁻(aq)
At equilibrium: 7.94x10⁻²M - x x x
The equilibrium constant (Ka₂) is:
Using Ka₂= 6.3x10⁻⁸ and solving the quadratic equation, we get the following SO₃⁻ and H⁺ concentrations:
![[SO_(3)^(2-)] = [H^(+)] = 7.07 \cdot 10^(-5)M](https://img.qammunity.org/2020/formulas/chemistry/college/t9f16muyg9kn9f96r93eljnqlc71nx9p5j.png)
Therefore, the final concentrations are:
[H₂SO₃] = 0.5M - 7.94x10⁻²M = 0.42M
[HSO₃⁻] = 7.94x10⁻²M - 7.07x10⁻⁵M = 7.93x10⁻²M
[SO₃²⁻] = 7.07x10⁻⁵M
[H⁺] = 7.94x10⁻²M + 7.07x10⁻⁵M = 7.95x10⁻²M
So, the lowest concentration at equilibrium is [SO₃²⁻] = 7.07x10⁻⁵M.
I hope it helps you!