Answer:
![f=145.29Hz](https://img.qammunity.org/2020/formulas/physics/college/r6rc5q1v18f0nvt4dzgsb8tbk2whnddgn6.png)
Step-by-step explanation:
The centripetal force is given by:
![F_c=ma_c(1)](https://img.qammunity.org/2020/formulas/physics/college/kbijih8n9ll2z6fw813ui909qbau2qn1lx.png)
Here m is the body's mass in which the force is acting and
is the centripetal acceleration:
![a_c=(v^2)/(r)(2)](https://img.qammunity.org/2020/formulas/physics/high-school/1vtyyjqu49nfmp2ed8an1jv5jvy0wz6lui.png)
Here v is the speed of the body and r its radius. The speed is given by:
![v=2\pi fr(3)](https://img.qammunity.org/2020/formulas/physics/college/zkc8xitpyq7f1ro157kwm2qa0gahyq3w1u.png)
Replacing (3) in (2):
![a_c=4\pi^2f^2r(4)](https://img.qammunity.org/2020/formulas/physics/college/jokzgvonjpe7o1oaw758n9k9aqagxehry0.png)
Replacing (4) in (1) and solving for f:
![F_c=m4\pi^2 f^2r\\\\f=\sqrt{(F_c)/(4m\pi^2r)}\\f=\sqrt{(4*10^(-11)N)/(4(3*10^(-16)kg)\pi^2(16*10^(-2)m))}\\f=145.29Hz](https://img.qammunity.org/2020/formulas/physics/college/qsy7bcj0w7pig9ood818tdvs8fbuvlertg.png)