Answer:
![[I^-]=4.6*10^(-8)M](https://img.qammunity.org/2020/formulas/chemistry/college/5fh1l99x8tuienqfgfgjehsapcih7d0bdm.png)
Step-by-step explanation:
The expression of the Ksp:
![Ksp_(AgCl)=[Ag^(+)][Cl^-]](https://img.qammunity.org/2020/formulas/chemistry/college/eiermda6dlvvt3e5rlq8os66hc7lhftruu.png)
![Ksp_(AgI)=[Ag^(+)][I^-]](https://img.qammunity.org/2020/formulas/chemistry/college/9xyfkpgjb9htckzldjqam5h015ecv9remh.png)
When the product of the concentrations of both ions equals the Ksp, the salt starts to precipitate.
For the AgCl:
![1.8*10^(-10)M^(2)=[Ag^(+)]*0.1M](https://img.qammunity.org/2020/formulas/chemistry/college/miv5ksup0n1kayejx928tk8yvtzv67q9pj.png)
![[Ag^(+)]=1.8*10^(-9)M](https://img.qammunity.org/2020/formulas/chemistry/college/n4j3vtvh6euxtc1hv7euno1lrvu4s82xz2.png)
Initially the concentration of I- was 0.1 M, due to the lower Ksp than the AgCl's, the AgI will precipite before. So, when AgCl starts to precipitate the concentration of I- will be in equilibrium, following the Ksp equation.
![8.3*10^(-17)M^(2)=1.8*10^(-9)M*[I^-]](https://img.qammunity.org/2020/formulas/chemistry/college/oc7s0enrsheaei8qhxhn4euupqpi6mectu.png)
![[I^-]=4.6*10^(-8)M](https://img.qammunity.org/2020/formulas/chemistry/college/5fh1l99x8tuienqfgfgjehsapcih7d0bdm.png)