Answer:
22m
Explanation:
Let height of flagpole=h
AB==17 m
(1 degree= 60 minute)
![\angle B=25^(\circ)43'=25+(43)/(60)=25.72^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/kjfgnz48muskcztsx6yhyogsy4wmsw6xp0.png)
We have to find the approximate height of the flagpole.
In triangle CDA,
![(CD)/(DA)=tan\theta=(Perpendicular\;side)/(Base)](https://img.qammunity.org/2020/formulas/mathematics/college/3bhnudoyfeb8k37vg5h36zw9vr5c2n3lby.png)
![h=DA(0.759)](https://img.qammunity.org/2020/formulas/mathematics/college/z1c5nof1es8im20q6d7yn943ui1fue0d4n.png)
In triangle CDB,
![tan 25.72^(\circ)=(CD)/(DB)](https://img.qammunity.org/2020/formulas/mathematics/college/csuu4xp3uctmwkyujmo6qv06nwqy3x7ab9.png)
![0.482=(h)/(DA+17)](https://img.qammunity.org/2020/formulas/mathematics/college/m74ms3a2cpzj7458zo20g6lxeobpylisgk.png)
![0.482DA+8.194=h](https://img.qammunity.org/2020/formulas/mathematics/college/j7t4ougmd3vtftwiuzqj40knbhcwbsy9kg.png)
Substitute the value
![0.482DA+8.194=0.759DA](https://img.qammunity.org/2020/formulas/mathematics/college/thykxobvhf9ksxzgbl87kvscq4alqs7zms.png)
![8.194=0.759DA-0.482DA](https://img.qammunity.org/2020/formulas/mathematics/college/og42jyoxhk3f8x6njib7yppt9kkad7vq6c.png)
![8.194=0.277DA](https://img.qammunity.org/2020/formulas/mathematics/college/wr8ikzcwa3ad48il9bg50a84966434ckws.png)
![DA=(8.194)/(0.277)=29.58](https://img.qammunity.org/2020/formulas/mathematics/college/x3iu5r15vkrw99gydioccll6coivyz5yud.png)
Substitute the value
![h=29.58 * 0.759=22.45 m\approx 22m](https://img.qammunity.org/2020/formulas/mathematics/college/8heaxek1pjisjn01li4hohvle6dxa2fgrh.png)
Hence, the height of the flagpole=22 m