Answer:
The length of the person’s shadow is 5.7ft
Step-by-step explanation:
Length of the flagpole =a= 35ft
Length of the shadow of the flagpole= b=50ft
Length of the person=c= 4ft
Suppose the length of the person’s shadow is=d
According to the rules of trigonometry
![\frac{\text { Length of the flagpole }}{\text { Length of the shadow of the flagpole }}=\frac{\text { Length of the person }}{\text { Length of the person's shadow }}](https://img.qammunity.org/2020/formulas/mathematics/college/s7i4nyhkq7jrwrpxyapx3bdmey1owhjek0.png)
![(a)/(b)=(c)/(d)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yxe8nc5hdaan0wrrdkh5qu5yrz8t8hoibt.png)
![(35)/(50)=(4)/(d)](https://img.qammunity.org/2020/formulas/mathematics/college/guwdl2gi4nu23hrs21qh00wahk6wb2ly4i.png)
35d=200
d=
![(200)/(35)](https://img.qammunity.org/2020/formulas/mathematics/college/kcjmhssmh2n4f1vmm373ue92trdqrkbynf.png)
d=5.7ft
Hence, The length of the person’s shadow is 5.7ft.