193k views
23 votes
Drag each expression to the correct location on the model. Not all will be used

Drag each expression to the correct location on the model. Not all will be used-example-1

1 Answer

5 votes

Answer:
\frac{x^(2)+2x+1 }{\mathbf {x-1}} \cdot \frac{\mathbf {5x^(2) +15x-20} }{7x^(2) +7x}

Explanation:


((5x^(2) +25x+20)/(7x) )/((x^(2) +2x+1)/(7x^(2) +7x) ) =(5x^(2) +25x+20)/(7x) * (7x^(2) +7x)/(x^(2) +2x+1)=(5x^(2) +25x+20)/(7x) * (7x(x +1))/((x+1)^(2) )=\\\\=(5x^(2) +25x+20)/(x+1) =\frac{{5(x+1)(x+4)}}{x+1}=5(x+4)


5(x+4)=(5(x-1) \cdot (x+4))/(x-1)=(5x^(2) +15x-20)/(x-1)

Thus, the expressions will be used: (5x² + 15x - 20) and (x + 4).

Let's check:


\frac{x^(2)+2x+1 }{\mathbf {x-1}} \cdot \frac{\mathbf {5x^(2) +15x-20} }{7x^(2) +7x} =((x+1)^(2) )/(x-1) \cdot (5(x-1) \cdot (x+4))/(7x(x+1)) =\\\\=((x+1) \cdot 5 \cdot (x+4))/(7x) =(5x^(2) +25x+20)/(7x)

User Mdarwin
by
4.3k points