58.7k views
1 vote
The cell potential of the following electrochemical cell depends on the gold concentration in the cathode half-cell:________

Pt(s)
|H2(g,1atm)
|H+(aq,1.0M)
|Au3+(aq,?M)
|Au(s).
What is the concentration of Au3+ in the solution if Ecell is 1.23 V ?

User Azu
by
6.0k points

1 Answer

2 votes

Answer: The concentration of
Au^(3+) is
1.096* 10^(-6)

Step-by-step explanation:

The given chemical cell follows:


Pt(s)|H_2(g,1atm)|H^+(aq,1.0M)||Au^(3+)(aq,?M)|Au(s)

Oxidation half reaction:
H_2(g,1atm)\rightarrow 2H^(+)(aq,1.0M)+2e^-;E^o_(2H^(+)/H_2)=0.0V ( × 3)

Reduction half reaction:
Au^(3+)(aq,?M)+3e^-\rightarrow Au(s);E^o_(Au^(3+)/Au)=1.50V ( × 2)

Net cell reaction:
3H_2(g,1atm)+2Au^(3+)(aq,?M)\rightarrow 6H^(+)(aq,1.0M)+2Au(s)

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the
E^o_(cell) of the reaction, we use the equation:


E^o_(cell)=E^o_(cathode)-E^o_(anode)

Putting values in above equation, we get:


E^o_(cell)=1.50-(0.0)=1.50V

To calculate the EMF of the cell, we use the Nernst equation, which is:


E_(cell)=E^o_(cell)-(0.059)/(n)\log ([H^(+)]^6)/([Au^(3+)]^2)

where,


E_(cell) = electrode potential of the cell = 1.23 V


E^o_(cell) = standard electrode potential of the cell = +1.50 V

n = number of electrons exchanged = 6


[H^(+)]=1.0M


[Au^(3+)]=?M

Putting values in above equation, we get:


1.23=1.50-(0.059)/(6)* \log(((1.0)^6)/([Au^(3+)]^2))


[Au^(3+)]=-1.0906* 10^(-6),1.096* 10^(-6)

Neglecting the negative value because concentration cannot be negative.

Hence, the concentration of
Au^(3+) is
1.096* 10^(-6)

User Inquilabee
by
4.6k points