Answer:
We have the matrix
![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/46sqt6k9926jutsfytaql4rke97r3zjfbs.png)
To find the eigenvalues of A we need find the zeros of the polynomial characteristic
![p(\lambda)=det(A-\lambda I_3)](https://img.qammunity.org/2020/formulas/mathematics/college/k15hzesnyx539tyx49i9xjbke229ac5sc8.png)
Then
![p(\lambda)=det(\left[\begin{array}{ccc}-4-\lambda&-4&-4\\0&-8-\lambda&-4\\0&8&4-\lambda\end{array}\right] )\\=(-4-\lambda)det(\left[\begin{array}{cc}-8-\lambda&-4\\8&4-\lambda\end{array}\right] )\\=(-4-\lambda)((-8-\lambda)(4-\lambda)+32)\\=-\lambda^3-8\lambda^2-16\lambda](https://img.qammunity.org/2020/formulas/mathematics/college/5u5ja4enkzjhcx2rgtch1n0sphl0ye0kj6.png)
Now, we fin the zeros of
.
![p(\lambda)=-\lambda^3-8\lambda^2-16\lambda=0\\\lambda(-\lambda^2-8\lambda-16)=0\\\lambda_(1)=0\; o \; \lambda_(2,3)=(8\pm√(8^2-4(-1)(-16)))/(-2)=(8)/(-2)=-4](https://img.qammunity.org/2020/formulas/mathematics/college/j5k67qa4slqmj9c7wxmpgcf4pp9dudpqlt.png)
Then, the eigenvalues of A are
of multiplicity 1 and
of multiplicity 2.
Let's find the eigenspaces of A. For
:
.Then, we use row operations to find the echelon form of the matrix
![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]\rightarrow\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&0&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/29c36qqus4pkgl622uaiyfzdytu3pufdup.png)
We use backward substitution and we obtain
1.
![-8y-4z=0\\y=(-1)/(2)z](https://img.qammunity.org/2020/formulas/mathematics/college/a1t3j4t6wjoxwp042e8irsak3qs7b6p5mg.png)
2.
![-4x-4y-4z=0\\-4x-4((-1)/(2)z)-4z=0\\x=(-1)/(2)z](https://img.qammunity.org/2020/formulas/mathematics/college/y4z65s812g0w9wgef81dxwpr4zeinauzia.png)
Therefore,
![E_0=\{(x,y,z): (x,y,z)=(-(1)/(2)t,-(1)/(2)t,t)\}=gen((-(1)/(2),-(1)/(2),1))](https://img.qammunity.org/2020/formulas/mathematics/college/8j4eonjcahq2k125oey75j52fiq6vlqdvz.png)
For
:
.Then, we use row operations to find the echelon form of the matrix
![A+4I_3=\left[\begin{array}{ccc}0&-4&-4\\0&-4&-4\\0&8&8\end{array}\right] \rightarrow\left[\begin{array}{ccc}0&-4&-4\\0&0&0\\0&0&0\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/fa3ztr83xmyr7g44cpkk5b16g1oiwvlzac.png)
We use backward substitution and we obtain
1.
![-4y-4z=0\\y=-z](https://img.qammunity.org/2020/formulas/mathematics/college/zfv8jfkvmxjm8uxrfr5xdwlplcwn4hm6at.png)
Then,
![E_(-4)=\{(x,y,z): (x,y,z)=(x,z,z)\}=gen((1,0,0),(0,1,1))](https://img.qammunity.org/2020/formulas/mathematics/college/xwk9sl8clc12vbdk7mo0qcwoov1sqvrfnv.png)