The concept required to develop this problem is Hook's Law and potential elastic energy.
By definition the force by Hooke's law is defined as
![F = kx](https://img.qammunity.org/2020/formulas/physics/middle-school/otgrgu83q5luker85xosn4da0rktlx5vd2.png)
Where,
k = Spring Constant
x = Displacement
On the other hand, the elastic potential energy is defined as
![E = (1)/(2) k\Delta x^2](https://img.qammunity.org/2020/formulas/physics/college/ws93xh39zohiabalrkvbnf2ea31ijfoj6p.png)
With the given values we can find the value of the spring constant, that is,
![F = kx](https://img.qammunity.org/2020/formulas/physics/middle-school/otgrgu83q5luker85xosn4da0rktlx5vd2.png)
![k=(F)/(x)](https://img.qammunity.org/2020/formulas/physics/college/hl78w4q8a2d9ex63yq3h6zsw92uf31d5hv.png)
![k= (83)/(0.02)](https://img.qammunity.org/2020/formulas/physics/college/d6rqtr0y48pdkhqyf3g5z3yq41iq9bwutt.png)
![k = 4120N/m](https://img.qammunity.org/2020/formulas/physics/college/25aqhqdre1gj1fwbiq2kzumd23hb4im4a2.png)
Applying the concepts of energy conservation then we can find the position of the block, that is,
![E = (1)/(2) k\Delta x^2](https://img.qammunity.org/2020/formulas/physics/college/ws93xh39zohiabalrkvbnf2ea31ijfoj6p.png)
![E = (1)/(2) k\Delta x^2](https://img.qammunity.org/2020/formulas/physics/college/ws93xh39zohiabalrkvbnf2ea31ijfoj6p.png)
![4.8 = (1)/(2) (4120)(x^2-(-0.02)^2)](https://img.qammunity.org/2020/formulas/physics/college/vz2qjcrkgs1vtpet117jn3145a1xopns5z.png)
![x = \sqrt{(2*4.8)/(4120)+(-0.02)^2}](https://img.qammunity.org/2020/formulas/physics/college/6l4ggsot45fd7w99yzrymg44odw2k3o3v8.png)
![x = \pm 0.05225m](https://img.qammunity.org/2020/formulas/physics/college/36u83i926g35w228k88inhgwa1xk4kecia.png)
Therefore the position of the block can be then,
![x_1 = 5.225cm](https://img.qammunity.org/2020/formulas/physics/college/vy5yk2zhkpw7y7nyadeqgtb8pb351kzr0o.png)
![x_2 = -5.225cm](https://img.qammunity.org/2020/formulas/physics/college/y3ttboiu7p8jdh7rgzdqrvy9bsv95pajbq.png)