Answer: B. 461 acres
Explanation:
Given : In an agricultural study, the average amount of corn yield is normally distributed with a mean of 185.2 bushels of corn per acre, with a standard deviation of 23.5 bushels of corn.
i.e.
![\mu=185.2\ \ , \ \sigma=23.5](https://img.qammunity.org/2020/formulas/mathematics/college/90u9az7941ifbcbizm3reyrffcwc1jsimz.png)
Let x denotes the amount of corn yield.
Now, the probability that the amount of corn yield is more than 190 bushels of corn per acre.
![P(x>190)=P((x-\mu)/(\sigma)>(190-185.2)/(23.5))](https://img.qammunity.org/2020/formulas/mathematics/college/gtl6sbhaewp5i1ytnro65v4yozwvfgedgj.png)
[Formula :
]
[∵ P(Z>z)=1-P(Z<z)]
[using z-value calculator or table]
![=0.4190595](https://img.qammunity.org/2020/formulas/mathematics/college/cesizj2g2snjvik7uk1tsnxegvwwihbit2.png)
Now, If a study included 1100 acres then the expected number to yield more than 190 bushels of corn per acre :-
![0.4190595*1100=460.96545\approx461\text{ acres}](https://img.qammunity.org/2020/formulas/mathematics/college/5esf6pc74lmhedkgb1yp0mdagksikgrb4z.png)
hence, the correct answer is B. 461 acres .