![f(x)=e^(x^2+2x)\implies f'(x)=2(x+1)e^(x^2+2x)](https://img.qammunity.org/2020/formulas/mathematics/college/6xs5awh984e0to9znwzprur66wfaxti3o0.png)
has critical points where the derivative is 0:
![2(x+1)e^(x^2+2x)=0\implies x+1=0\implies x=-1](https://img.qammunity.org/2020/formulas/mathematics/college/pbwuc1a8xr1ysbwyamp0zx1g36eokj9ilg.png)
The second derivative is
![f''(x)=2e^(x^2+2x)+4(x+1)^2e^(x^2+2x)=2(2x^2+4x+3)e^(x^2+2x)](https://img.qammunity.org/2020/formulas/mathematics/college/ttsorid866fnvzxruexs0f6h5b0vcj2fws.png)
and
, which indicates a local minimum at
with a value of
.
At the endpoints of [-2, 2], we have
and
, so that
has an absolute minimum of
and an absolute maximum of
on [-2, 2].
So we have
![\frac1e\le f(x)\le e^8](https://img.qammunity.org/2020/formulas/mathematics/college/1fxoq976dmi1jjmevznfeg1m1sap9uenyo.png)
![\implies\displaystyle\int_(-2)^2\frac{\mathrm dx}e\le\int_(-2)^2f(x)\,\mathrm dx\le\int_(-2)^2e^8\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/college/2dl9ud2gyi2p8glmkr6qsahuzmunby571y.png)
![\implies\boxed{\displaystyle\frac4e\le\int_(-2)^2f(x)\,\mathrm dx\le4e^8}](https://img.qammunity.org/2020/formulas/mathematics/college/p4p24104h75ad4iw8i3sw3yf820g5xit6l.png)