136k views
2 votes
Find the absolute extrema of f(x) = e^{x^2+2x}f ( x ) = e x 2 + 2 x on the interval [-2,2][ − 2 , 2 ] first and then use the comparison property to find the lower and upper bounds for I = \displaystyle \int_{-2}^{2} f(x) \, dxI = ∫ − 2 2 f ( x ) d x.

User Armondo
by
5.1k points

1 Answer

2 votes


f(x)=e^(x^2+2x)\implies f'(x)=2(x+1)e^(x^2+2x)


f has critical points where the derivative is 0:


2(x+1)e^(x^2+2x)=0\implies x+1=0\implies x=-1

The second derivative is


f''(x)=2e^(x^2+2x)+4(x+1)^2e^(x^2+2x)=2(2x^2+4x+3)e^(x^2+2x)

and
f''(-1)=\frac2e>0, which indicates a local minimum at
x=-1 with a value of
f(-1)=\frac1e.

At the endpoints of [-2, 2], we have
f(-2)=1 and
f(2)=e^8, so that
f has an absolute minimum of
\frac1e and an absolute maximum of
e^8 on [-2, 2].

So we have


\frac1e\le f(x)\le e^8


\implies\displaystyle\int_(-2)^2\frac{\mathrm dx}e\le\int_(-2)^2f(x)\,\mathrm dx\le\int_(-2)^2e^8\,\mathrm dx


\implies\boxed{\displaystyle\frac4e\le\int_(-2)^2f(x)\,\mathrm dx\le4e^8}

User Thomas Jiang
by
5.5k points