127k views
19 votes
Using the properties of integer exponents, match each expression with its equivalent expression.​

Using the properties of integer exponents, match each expression with its equivalent-example-1
User JamieA
by
8.1k points

1 Answer

4 votes

Answer:

1)
\mathbf{5^(-3)=(1)/(125)}

2)
\mathbf{-5^(-3)=-(1)/(125)}

3)
\mathbf{(-5^(-3))^(-1)=-125}

4)
\mathbf{(-5^(-3))^0=1}

Explanation:

We need to solve the exponents

1)
5^(-3)

We know that:
a^(-1)=(1)/(a)


5^(-3)\\=(1)/(5^3)\\=(1)/(125)

So, we get
\mathbf{5^(-3)=(1)/(125)}

2)
-5^(-3)

We know that:
a^(-1)=(1)/(a)


-5^(-3)\\=-(1)/(5^3)\\=-(1)/(125)

So, we get
\mathbf{-5^(-3)=-(1)/(125)}

3)
(-5^(-3))^(-1)

We know that:
(a^m)^n=a^(m*n)

Using this rule:


(-5^(-3))^(-1)\\=-5^(-3*-1)\\=-5^(3)\\=-125

So, we get
\mathbf{(-5^(-3))^(-1)=-125}

4)
(-5^(-3))^0

We know that:
(a^m)^n=a^(m*n)

Using this rule:


(-5^(-3))^0\\=-5^(-3*0)\\=-5^(0)\\We\:know\:a^0=1\\=1

So, we get
\mathbf{(-5^(-3))^0=1}

User HarsHarI
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories