127k views
19 votes
Using the properties of integer exponents, match each expression with its equivalent expression.​

Using the properties of integer exponents, match each expression with its equivalent-example-1
User JamieA
by
6.1k points

1 Answer

4 votes

Answer:

1)
\mathbf{5^(-3)=(1)/(125)}

2)
\mathbf{-5^(-3)=-(1)/(125)}

3)
\mathbf{(-5^(-3))^(-1)=-125}

4)
\mathbf{(-5^(-3))^0=1}

Explanation:

We need to solve the exponents

1)
5^(-3)

We know that:
a^(-1)=(1)/(a)


5^(-3)\\=(1)/(5^3)\\=(1)/(125)

So, we get
\mathbf{5^(-3)=(1)/(125)}

2)
-5^(-3)

We know that:
a^(-1)=(1)/(a)


-5^(-3)\\=-(1)/(5^3)\\=-(1)/(125)

So, we get
\mathbf{-5^(-3)=-(1)/(125)}

3)
(-5^(-3))^(-1)

We know that:
(a^m)^n=a^(m*n)

Using this rule:


(-5^(-3))^(-1)\\=-5^(-3*-1)\\=-5^(3)\\=-125

So, we get
\mathbf{(-5^(-3))^(-1)=-125}

4)
(-5^(-3))^0

We know that:
(a^m)^n=a^(m*n)

Using this rule:


(-5^(-3))^0\\=-5^(-3*0)\\=-5^(0)\\We\:know\:a^0=1\\=1

So, we get
\mathbf{(-5^(-3))^0=1}

User HarsHarI
by
5.6k points