Answer:
The equation of the time-dependent function of the position is
![x(t)=5\cos(8.08t)](https://img.qammunity.org/2020/formulas/physics/college/lyovoxcsrk8yb950i3jjesde9gqpr73tky.png)
(b) is correct option.
Step-by-step explanation:
Given that,
Length = 12 cm
Mass = 200 g
Extend distance = 27 cm
Distance = 5 cm
Phase angle =0°
We need to calculate the spring constant
Using formula of restoring force
![F=kx](https://img.qammunity.org/2020/formulas/physics/high-school/ivnw6jqhdmurxa3c0z25q7hl9zxvo5d7qf.png)
![mg=kx](https://img.qammunity.org/2020/formulas/physics/high-school/ilq7o6vnl1rqzg043wop0vtnt3iri3hx7c.png)
![k=(mg)/(x)](https://img.qammunity.org/2020/formulas/physics/high-school/ezeb48kmhpmsb0jd47vnn39xvh2xc874ka.png)
![k=(200*10^(-3)*9.8)/((27-12)*10^(2))](https://img.qammunity.org/2020/formulas/physics/college/ki3x054urt2zh3vejg7go8jeo5hf5o0i2r.png)
![k=13.06\ N/m](https://img.qammunity.org/2020/formulas/physics/college/zenb73uf7lzxbfcv4hivwd48sqjt0suys8.png)
We need to calculate the time period
Using formula of time period
![T=2\pi\sqrt{(m)/(k)}](https://img.qammunity.org/2020/formulas/physics/college/6a4tmqbx1mm5iq8u18rggt4cvzvxmwlg9f.png)
Put the value into the formula
![T=2\pi\sqrt{(0.2)/(13.6)}](https://img.qammunity.org/2020/formulas/physics/college/hmit6e3e075lpoavs2oain5pbtujsltmgb.png)
![T=0.777\ sec](https://img.qammunity.org/2020/formulas/physics/college/jo3ori3de21f4827pbq7lp8n9lu5gfag74.png)
At t = 0, the maximum displacement was 5 cm
So, The equation of the time-dependent function of the position
![x(t)=A\cos(\omega t)](https://img.qammunity.org/2020/formulas/physics/college/tn7n3nvovoy63pzmfjqy61lgs1mcnjmevq.png)
Put the value into the formula
![x(t)=5\cos(2\pi* f* t)](https://img.qammunity.org/2020/formulas/physics/college/9desbna27dvxlbjmyci04dvh8hq5yqgf1u.png)
![x(t)=5\cos(2\pi*(1)/(T)* t)](https://img.qammunity.org/2020/formulas/physics/college/dylqfh7f0fm1jfzfwl5f09m67npnp08u8k.png)
![x(t)=5\cos(2\pi*(1)/(0.777)* t)](https://img.qammunity.org/2020/formulas/physics/college/tgmh633kz3o2dbrg74ibv27j8j32wq6sb8.png)
![x(t)=5\cos(8.08t)](https://img.qammunity.org/2020/formulas/physics/college/lyovoxcsrk8yb950i3jjesde9gqpr73tky.png)
Hence, The equation of the time-dependent function of the position is
![x(t)=5\cos(8.08t)](https://img.qammunity.org/2020/formulas/physics/college/lyovoxcsrk8yb950i3jjesde9gqpr73tky.png)