Answer:
The final temperature of the given ideal diatomic gas: T₂ = 753.6 K
Step-by-step explanation:
Given: Atmospheric pressure: P = 1.0 atm
Initial Volume: V₁ , Final Volume: V₂ = V₁ (1/10)
⇒ V₁ / V₂ = 10
Initial Temperature: T₁ = 300 K, Final temperature: T₂ = ? K
For a diatomic ideal gas: γ = 7/5
For an adiabatic process:
![V^(\gamma-1 )T = constant](https://img.qammunity.org/2020/formulas/chemistry/high-school/ad0ako9m9t6v84del2y6xffs0gi0yk43ju.png)
![V_(1)^(\gamma-1 )T_(1) = V_(2)^(\gamma-1 )T_(2)](https://img.qammunity.org/2020/formulas/chemistry/high-school/klbts0k65c7ockqob2u3m08mwq8kbuhs94.png)
![\left [(V_(1))/(V_(2)) \right ]^(\gamma-1 ) = (T_(2))/(T_(1))](https://img.qammunity.org/2020/formulas/chemistry/high-school/18kjytv9ee6zpjnj1f1i6ng2z1kcwyis96.png)
![\left [10 \right ]^{(7)/(5)-1 } = (T_(2))/(300 K)](https://img.qammunity.org/2020/formulas/chemistry/high-school/gkmj3x7m3uykyrhd56m8ffvij2bypevj8z.png)
![\left [10 \right ]^{(2)/(5) } = (T_(2))/(300 K)](https://img.qammunity.org/2020/formulas/chemistry/high-school/wa31tspcojgjq0f0g5qbeve038ddiugtkd.png)
![2.512 = (T_(2))/(300 K)](https://img.qammunity.org/2020/formulas/chemistry/high-school/u0of6kr1hes50eppyc8wle8y7u63onig3p.png)
![T_(2) = 753.6 K](https://img.qammunity.org/2020/formulas/chemistry/high-school/38ulygil7itjpg9euh1qlavmctdezixier.png)
Therefore, the final temperature of the given ideal diatomic gas: T₂ = 753.6 K