To solve this problem it is necessary to apply Snell's law and thus be able to calculate the angle of refraction.
From Snell's law we know that
![n_1sin\theta_1 = n_2 sin\theta_2](https://img.qammunity.org/2020/formulas/physics/college/ik2b2ae9zprr3gh8y1zkobnyj18f7yggbe.png)
Where,
n_i = Refractive indices of each material
= Angle of incidence
= Refraction angle
Our values are given as,
![\theta_1 = 38\°](https://img.qammunity.org/2020/formulas/physics/college/fi4x1hn1kklisl0ku15zsfkdznomg761q3.png)
![n_1 = 1](https://img.qammunity.org/2020/formulas/physics/high-school/tg7hfsaacxkidi023gwlnz4m0qiw2cg84a.png)
![n_2 = 1.4](https://img.qammunity.org/2020/formulas/physics/college/1hf6w8sh1gruc0a8zosostvo46ntanv9ix.png)
Replacing
![1*sin38 = 1.4*sin\theta_2](https://img.qammunity.org/2020/formulas/physics/college/zprtjtvgr9ofhcr795xp76djxqqamz601w.png)
Re-arrange to find
![\theta_2](https://img.qammunity.org/2020/formulas/physics/high-school/1laan8t05qxz5qad2suur8roqbwvu2unkr.png)
![\theta_2 = sin^(-1) (sin38)/(1.4)](https://img.qammunity.org/2020/formulas/physics/college/vevta9yrte0cmd85g6lmp7uduiaom8786m.png)
![\theta_2 = 26.088°](https://img.qammunity.org/2020/formulas/physics/college/n9p3xpi1a8bhuyqv0fgwad1qniu4xv6aze.png)
Therefore the angle will the beam make with the normal in the glass is 26°