Answer:
a = 6 units
![c= 6√(2)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s2bnbqt2ckcl9xt8ekpredtm7wypzh2aw2.png)
Explanation:
Given:
Let Labelled the diagram first
Δ ABC right angle at ∠ C = 90°
∠ B = 45 °
AB = c
BC = a
AC = 6
To Find:
a =?
c =?
Solution:
In Δ ABC
∠ A + ∠ B + ∠ C = 180°.....{Angle Sum Property of a Triangle}
∴ ∠ A + 45 + 90 = 180°
∴ ∠ A = 180 - 135
∴ ∠ A = 45°
Now ∠ A = ∠ B = 45° in Δ ABC
∴ Δ ABC is an Isosceles Triangle.
∴ Two sides are equal of an Isosceles Triangle.
∴ AC = BC = a = 6 units
Now for c we use Pythagoras theorem
![(\textrm{Hypotenuse})^(2) = (\textrm{Shorter leg})^(2)+(\textrm{Longer leg})^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zzqkt74bo8i0g39uk3gex0h5896knh6wio.png)
Substituting the given values we get
c² = a² + 6²
c² = 6² + 6²
c² = 36 + 36
c² = 72
∴ c = ±√72
as c cannot be negative
∴
![c = 6√(2)\ units\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/88mpywmqh6t832xduz3j41li6pwmnn3ew1.png)
a = 6 units
![c= 6√(2)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s2bnbqt2ckcl9xt8ekpredtm7wypzh2aw2.png)