Answer:
The distance between the points ( 5 , - 9 ) and ( - 3 , - 1 ) is 4
Explanation:
Given points as :
Point A = ( 5 , - 9 )
I.e (x_1 , y_1) = ( 5 , - 9 )
Point B = ( - 3 , - 1 )
I.e( x_2 , y_2) = ( - 3 , - 1 )
Let The distance between points A and B = AB
So From distance formula
Distance AB =
![\sqrt{(y_2 - y_1)^(2) + (x_2 - x_1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/axeftyss6tmg08bbgmr4aq7vcamep54w2f.png)
So, Distance AB =
![\sqrt{( - 1 + 9)^(2) + ( - 3 - 5)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ijmn3bhikjevvc8lqxlm3bx1945bc8irln.png)
Or, Distance AB =
![\sqrt{(8)^(2) + (- 8)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aip3uz003z45qprm8smu35g6pz0usxtc2b.png)
Or, Distance AB =
![√(64 + 64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7b3909qksomgo9qyvmvy0c2wyfcg6ob9ol.png)
Or, Distance AB =
![√(128)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qey8ixx1blipek1eib1ke1zanewa4nsnjf.png)
∴ Distance AB = 4
![√(8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3co2327322nhhdhmhqnyj2nzqc08a0cuvd.png)
Hence The distance between the points ( 5 , - 9 ) and ( - 3 , - 1 ) is 4
Answer