Answer:
The length of VW is
![25\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xsf8n8k2vhyj71wly21465iikd8zyur3y8.png)
Explanation:
we know that
The perimeter of triangle TVW is equal to
![P=VW+TV+TW](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gk5h9c5inzdhyi7qdpzhbrqc00fo7ntacr.png)
we have
![P=74\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kx74zjxvp0fzypogi4n76s3mmxe02v4iao.png)
so
-----> equation A
----> equation B
----> equation C
substitute equation B in equation C
----> equation D
substitute equation B and equation D in equation A
![74=(TV+3)+TV+(2TV-17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dlw1xwr4dbqhqsxom362jwhl990vx9riko.png)
solve for TV
![74=4TV-14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ivc57hn67dl87d9vgu1vrwpyoojh65r94v.png)
![4TV=74+14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qxrl3oj7dvkxgezttjs89cqln2rl35qxga.png)
![4TV=88](https://img.qammunity.org/2020/formulas/mathematics/middle-school/duq1864ie4vyqe85mf9lg8ukxvzgtl18v4.png)
![TV=22\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rzdmk0hghy2ohwgtzrq8kairkm714p0l90.png)
Find the value of VW
----->
![VW=22+3=25\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8luvpqe2c80bvhhwhnd7w00zvmy7c1a4h5.png)
Find the value of TW
----->
![TW=2(22)-17=27\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d1dihs0tkug2c4305dm4qhraknpyp7h495.png)