114k views
2 votes
If cos theta = 3/5 and theta is in the first quadrant, what is sin 2 theta

1 Answer

5 votes

If cos theta = 3/5 and theta is in the first quadrant, then
\sin 2 \theta=(24)/(25)

Solution:

Given: cosθ = 3/5 and θ is in first quadrant

We need to find sin2θ


\text {We know, } \sin ^(2) \theta=1-\cos ^(2) \theta

Substitute cosθ in above formula


\sin ^(2) \theta=1-\left((3)/(5)\right)^(2)


\sin ^(2) \theta=1-\left((9)/(25)\right)


\begin{array}{l}{\sin ^(2) \theta=(25-9)/(25)} \\\\ {\sin ^(2) \theta=(16)/(25)}\end{array}

Taking square root on both sides,


\sin \theta=\pm (4)/(5)

Since, θ is in first quadrant therefore we will choose positive value


\sin \theta=(4)/(5)

Let us calculate sin2θ

The formula for sin2θ is given as:


\sin 2 \theta=2 \sin \theta \cos \theta


\sin 2 \theta=2 * (3)/(5) * (4)/(5)=(24)/(25)

Thus the value of sin 2 theta is found

User Richselian
by
5.0k points