If cos theta = 3/5 and theta is in the first quadrant, then
![\sin 2 \theta=(24)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hiar0188j1aji106vr7lqegss7m9a5j85w.png)
Solution:
Given: cosθ = 3/5 and θ is in first quadrant
We need to find sin2θ
![\text {We know, } \sin ^(2) \theta=1-\cos ^(2) \theta](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bzd1eqy9pk2jmwo26uk2rl1rm0nf4t422n.png)
Substitute cosθ in above formula
![\sin ^(2) \theta=1-\left((3)/(5)\right)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xvy0ne58a7iw4artc1g41m3r71qrcbuosm.png)
![\sin ^(2) \theta=1-\left((9)/(25)\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c7ugtwtqbrji5vb0lg02pdlc590q2e1lp1.png)
![\begin{array}{l}{\sin ^(2) \theta=(25-9)/(25)} \\\\ {\sin ^(2) \theta=(16)/(25)}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/shh1zujrx69vx3x60eqqcr37sttnyiulrn.png)
Taking square root on both sides,
![\sin \theta=\pm (4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9wwyqyqdy3xzsrj3nfpai8dr9mab7u16lw.png)
Since, θ is in first quadrant therefore we will choose positive value
![\sin \theta=(4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hcq2wu36by65lmexoykm1992vfrzsad8c5.png)
Let us calculate sin2θ
The formula for sin2θ is given as:
![\sin 2 \theta=2 \sin \theta \cos \theta](https://img.qammunity.org/2020/formulas/mathematics/middle-school/efws9de9nazmar2hff6jq4ufaeggu4w8u0.png)
![\sin 2 \theta=2 * (3)/(5) * (4)/(5)=(24)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p41aoekhaq3dchhetkfcod5na5pnbd8cv5.png)
Thus the value of sin 2 theta is found