We divide [0, 3] into
subintervals,
![\left[0,\frac3n\right]\cup\left[\frac3n,\frac6n\right]\cup\left[\frac6n,\frac9n\right]\cup\cdots\cup\left[\frac{3(n-1)}n,3\right]](https://img.qammunity.org/2020/formulas/mathematics/college/va2mbhif6m12bjn9no9ryunewt8j629c3m.png)
so that the right endpoint of each subinterval is given according to the arithmetic sequence,
![r_k=\frac{3k}n](https://img.qammunity.org/2020/formulas/mathematics/college/3imvs2oukhtkysq1qgu17v6kwytf6akm2n.png)
for
.
The Riemann sum is then
![\displaystyle\sum_(k=1)^nf(r_k)\Delta x_k](https://img.qammunity.org/2020/formulas/mathematics/college/2uxlgrvf3fmx1rzoferovj5cdyckz01jzk.png)
where
![\Delta x_k=r_k-r_(k-1)=\frac{3k}n-\frac{3(k-1)}n=\frac3n](https://img.qammunity.org/2020/formulas/mathematics/college/tn4qwbo0vibobjk9j7nw9bh8xm8hbzz3pp.png)
With
, we have
![\displaystyle\frac3n\sum_(k=1)^n2\left(\frac{3k}n\right)^2=(54)/(n^3)\sum_(k=1)^nk^2](https://img.qammunity.org/2020/formulas/mathematics/college/sovazzibgie64h9y4ews3wldfakttf9mnh.png)
Recall that
![\displaystyle\sum_(k=1)^nk^2=\frac{n(n+1)(2n+1)}6](https://img.qammunity.org/2020/formulas/mathematics/college/zt0p4eub9k0bqxtap8v39xdprptp1un592.png)
The area under the curve
over the interval [0, 3] is then
![\displaystyle\int_0^32x^2\,\mathrm dx=\lim_(n\to\infty)(54n(n+1)(2n+1))/(6n^3)=\lim_(n\to\infty)9\left(2+\frac3n+\frac1{n^2}\right)=\boxed{18}](https://img.qammunity.org/2020/formulas/mathematics/college/on0oqwrr9o99jjh4x3kfynfa7bcc22dyla.png)