121k views
0 votes
A right triangle is shown below whose sides are 2x, x2 - 1, and x2 + 1.

(a)
Prove the identity (2x)2 + (x2 - 1)2 = (x2 + 1)2
for x > 1.
x2 +1
.12-1​

User Vogdb
by
9.0k points

1 Answer

4 votes

Answer:


(2x)^2 + (x^2 - 1)^2 = (x^2 + 1)^2 PROVED

Explanation:

The sides of the given right triangle are :
2x , (x^2 -1) , (x^2 +1)

Now here, To show:
(2x)^2 + (x^2 - 1)^2 = (x^2 + 1)^2 .... (1)

Now, by ALGEBRAIC IDENTITY:
(a \pm b)^2  = a ^2 +b^2 \pm 2ab

So here, similarly


(x^2-1)^2 = (x^2)^2 + (1)^2 - 2 (x^2)\\(x^2+1)^2 = (x^2)^2 + (1)^2+ 2 (x^2)

Now, substituting the value on Left side of (1) , we get :


(2x)^2 + (x^2 - 1)^2   = 4x^2 + (x^2)^2 + (1)^2 - 2 (x^2) = 4x^2 + (x^4) + 1 - 2 x^2  = x^4 + 1 + 2x^2 ...... (a)

Also, the right side of (1) is:


(x^2 + 1)^2 = (x^2)^2 + (1)^2+ 2 (x^2)  = x^4 + 1 + 2x^2 ... (b)

from(a) and (b) we see that


x^4 + 1 + 2x^2 = x^4 + 1 + 2x^2\\\implies(2x)^2 + (x^2 - 1)^2 = (x^2 + 1)^2

HENCE PROVED.

User Marcos Crispino
by
8.0k points