218k views
0 votes
If s(x) = 2x2 + 3x - 4, and t(x) = x + 4 then s(x) · t(x) =

1 Answer

4 votes

Answer:


\large\boxed{s(x)\cdot t(x)=2x^3+11x^2+8x-16}

Explanation:


s(x)=2x^2+3x-4,\ t(x)=x+4\\\\s(x)\cdot t(x)\\\\\text{use the distributive property:}\ a(b+c)=ab+ac\\\\s(x)\cdot t(x)=(2x^2+3x-4)(x+4)\\\\=(2x^2+3x-4)(x)+(2x^2+3x-4)(4)\\\\=(2x^2)(x)+(3x)(x)+(-4)(x)+(2x^2)(4)+(3x)(4)+(-4)(4)\\\\=2x^3+3x^2-4x+8x^2+12x-16\\\\\text{combine like terms}\\\\=2x^3+(3x^2+8x^2)+(-4x+12x)-16\\\\=2x^3+11x^2+8x-16

User Jeremiahbuddha
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories